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SketchQL: Video Moment�erying with a Visual �ery
Interface

ABSTRACT

Localizing video moments based on the movement patterns of ob-
jects is an important task in video analytics. Existing video analytics
systems o�er two types of querying interfaces based on natural lan-
guage and SQL, respectively. However, both types of interfaces have
major limitations. SQL-based systems require high query speci�ca-
tion time, whereas natural language-based systems require large
training datasets to achieve satisfactory retrieval accuracy.

To address these limitations, we present SketchQL, a video data-
base management system (VDBMS) for o�ine, exploratory video
moment retrieval that is both easy to use and generalizes well
across multiple video moment datasets. To improve ease-of-use,
SketchQL features a visual query interface that enables users to
sketch complex visual queries through intuitive drag-and-drop
actions. To improve generalizability, SketchQL operates on object-
tracking primitives that are reliably extracted across various datasets
using pre-trained models. We present a learned similarity search al-
gorithm for retrieving videomoments closelymatching the user’s vi-
sual query based on object trajectories. SketchQL trains the model
on a diverse dataset generated with a novel simulator, that en-
hances its accuracy across a wide array of datasets and queries. We
evaluate SketchQL on four real-world datasets with nine queries,
demonstrating its superior usability and retrieval accuracy over
state-of-the-art VDBMSs.
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1 INTRODUCTION

Video moment retrieval, also known as video moment localization,
is an important task in video analytics whose goal is to search
for target moments (where each moment is a sequence of frames)
within a video. This task has numerous applications in tra�c surveil-
lance [51], sports analytics [25], and autonomous driving [55, 59].
For example, transport researchers are interested in retrieving dif-
ferent instances of left-turning vehicles from surveillance video
streams to analyze driving behaviors and improve tra�c safety [5].

There are two main types of query interfaces for video moment
retrieval, SQL-based and natural language-based, primarily devel-
oped by the data management and machine learning communities
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(a) Nearby car, acute an-
gle, turning top.

(b) Distant car, acute an-
gle, turning top.

(c) Distant car, obtuse
angle, turning left.

Figure 1: Challenges in Video Moment Retrieval – Diverse left-turn

motions in a tra�c surveillance video stream [51].

respectively. However, it is challenging to use these interfaces to ef-
fectively retrieve even simple events such as “car making a left-turn"
in diverse, real-world videos, as shown in Figure 1.

1. SQL-based Interface. Many recent video database manage-
ment systems (VDBMSs) use a SQL-based interface [9, 12–14, 21,
34, 40, 52, 54] to retrieve relevant video moments. These systems
either specify object and action categories of interest as query pred-
icates [9, 14, 34, 52, 54], or apply spatio-temporal rules over video
frames [12, 13]. They utilize low-level primitives extracted using
pre-trained models such as pre-trained object detectors [34, 54], ob-
ject tracking models [34, 54], or scene graph extraction models [12].
The main advantage of SQL-based interfaces is their ability to gen-

eralize across di�erent datasets and video domains with few or no
labeled examples, thanks to the robust performance of pre-trained
models for extracting low-level primitives [48].

However, SQL-based systems require considerable time for query
speci�cation, as it is often non-intuitive to translate visual patterns
into SQL. For example, the left-turn event in Figure 1c can be re-
trieved using the following SQL query, which uses bounding boxes
extracted from an object tracking model as the low-level primitives:

Q1: SELECT car FROM (PROCESS InputVideo

PRODUCE car USING ObjectTracker)

WHERE TurningAngle(car) > 15 deg

AND RelativeXVelocity(car) < 0

AND MovingDistance(car) > 20

The query enforces the following conditions: (1) The turning angle
must exceed 15 degrees, con�rming that the vehicle is making a
turn; (2) The x-component of the velocity vector should be nega-
tive, which helps distinguish left turns from right turns; (3) The
vehicle must move at least 20 pixels, eliminating false positives
caused by minor camera shakes. Each condition requires a non-
trivial implementation of user-de�ned functions (UDFs), such as
TurningAngle shown in Listing 1. Moreover, users must manually
adjust the query parameters to match the diverse left-turn instances
showcased in Figure 1. Due to these complexities, our experiments
�nd that even simple queries like identifying left-turns can consume
a signi�cant amount of programming time (exceeding 10 minutes).

There are certain workarounds to simplify query speci�cation
for SQL-based methods, which come with other compromises. For
example,Miris [9], a state-of-the-art SQL-based VDBMS, identi�es
left turns using zonal markings in �xed camera con�gurations,
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def TurningAngle(boxes, angle):

centroids = _bounding_box_centroid(boxes)

# get bounding box centroid movements between frames

centroids_rel = [centroids[i+1]-centroids[i] for i in np.

arange(0, len(centroids)-1, 10)]

# find the angle of the relative velocity vector

for i in range(len(centroids_rel) - 1):

u1 = centroids_rel[i]/np.linalg.norm(centroids_rel[i])

u2 = centroids_rel[i+1]/np.linalg.norm(centroids_rel[i+1])

angle = np.arccos(np.clip(np.dot(u1, u2), -1.0, 1.0))

angles.append(np.degrees(angle))

# return frames that satisfy the predicate

return [angles[i] > angle for i in range(len(angles))]

Listing 1: TurningAngle function for identifying left turns.

ZONE 2

ZONE 1

(a)Miris [9] requires hardcoded zonal
markings to detect a left turn.

(b) Clip [43] returns frames with
parked cars facing "left".

Figure 2: Limitations of SoTA VDBMSs – Illustrative video moments

retrieved by VDBMSs for "car making a left turn" query.

as shown in Figure 2a. However, this simpli�ed approach only
works with �xed cameras and simple movement patterns, unable
to accurately answer several queries in our evaluation.

2. Natural language-based Interface. Natural language-
based interfaces retrieve target video clips based on user-speci�ed
text (e.g., “Car making a left turn") and are popular within the ML
community [11, 22, 38, 53, 61, 63]. The main advantage of these
methods is that they are easy to use for non-experts. These methods
are typically implemented by training end-to-end deep learning
models that directly map text to raw video frames [62, 63].

A key limitation of these methods is their requirement of large
training dataset to support accurate retrieval [8, 26, 44], which limits
their application outside the original training contexts. For example,
ActivityNet, a popular benchmark for human activities in videos,
requires ∼8 Amazon Mechanical Turk workers to annotate each
video [10, 27]. Despite this immense labeling e�ort, we discover that
a retrieval model trained on ActivityNet struggles to identify even a
single player-kicking-ball event in soccer game videos. Researchers
have also proposed large pre-trained vision-language models for
zero-shot video analysis [43]. These models also su�er from the
generalization problem and often require additional �ne-tuning
to perform well on other datasets [43, 65, 66]. For example, when
prompted with the natural language query “A car makes a left turn",
the pre-trained vision-language model Clip [43] mostly retrieves
frames containing stationary cars facing left, as shown in Figure 2b.

As a result, these natural language-based methods are primarily
used in closed-world scenarios such as indoor activities [22], where
clips are retrieved only from a pre-de�ned domain with a large
collection of labeled training data.

Challenges. Table 1 summarizes the advantages and limitations
of SQL-based and natural language-based interfaces. Systems with
SQL-based interfaces have better generalizability across datasets
but are not easy to use; systems with natural language interfaces

Query Interface Representative Systems Ease-of-use Generalizability

SQL Miris [9] Low High

Natural language Clip [43], 2DTAN [63] High Low
Visual SketchQL (this paper) High High

Table 1: Comparison of di�erent video moment query interfaces.

Along each dimension, bold text denotes the best setting.

are easy to use but do not generalize to datasets di�erent from the
training set. A VDBMS must ideally satisfy both criteria:

1. Ease-of-use. The system must allow intuitive expression of in-
tricate object motions and multi-object interactions. It should au-
tomatically retrieve relevant video moments without signi�cant
programming time and manual parameter tuning.

2. Generalizability. The system should generalize across datasets
and trajectory variations without extensive real-world training
data. It must support arbitrary trajectory patterns and achieve high
accuracy even for complex multi-object trajectories.

1
Car

Car

Car

Car

Car

Car

CarCar

Car

Car

2

Car

Car

Car

Car

3Car

Car

Car

(a) The user selects an object type and performs a series of drag-and-drop
actions on the visual canvas in the Sketcher.

1

2
3

(b) The Matcher automatically maps the user sequence to the relevant video
moment using learned similarity search.

Figure 3: – Illustration of SketchQL’s moment retrieval system

3. Our Approach – Sketch-Based Interface. In this pa-
per, we present SketchQL, a VDBMS for o�ine, exploratory video
moment retrieval that is both easy to use and generalizes across
datasets. SketchQL focuses on object track queries [9], which
queries video moments based on object trajectories or trajectory
interactions. SketchQL addresses the aforementioned challenges
with its three key components.
(1) Sketcher. The �rst component, Sketcher, features a visual
query interface that enables users to sketch complex queries through
simple drag-and-drop actions. For example, Figure 3a illustrates how
users can specify a query to �nd a car making a left turn followed by
a right turn with drag-and-drop. By leveraging a human’s inherent
ability to capture complex events via sketches, Sketcher improves
the usability and expressivity of query speci�cations for non-expert
users. To support more complex queries involving multiple objects,
the Sketcher also provides an intuitive composition interface (§3)
to create, edit, and align sketches of multiple objects.
(2) Matcher. To match user-provided visual queries to video
moments, SketchQL utilizes a learned similarity search module
called the Matcher. This module compares the query trajectories
provided by the user to object bounding box trajectories extracted
using pre-trained object trackers, as illustrated in Figure 3b. It
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encodes similarities between trajectories using a transformer-based
neural network model and outputs the top-K similar moments.

Matcher provides high generalizability via two key features:
• Similar to existing SQL-based methods (e.g., Miris [9]), the
module utilizes object tracking primitives, which can be reli-
ably extracted across datasets with pre-trained models [48].
• The neural networkmodel for encoding similarity is pre-trained

on a large, diverse set of bounding box trajectory pairs, gener-
ated automatically through a novel synthetic data generation
process. Since the model is exposed to a wide diversity of tra-
jectories beyond any single dataset, it can retrieve trajectories
across datasets without manual parameter tuning.

(3)Tuner.TheMatcherworkswell out-of-the-box across datasets,
as we will show in experiments (§6.2). However, visual queries can
be ambiguous, leading to multiple interpretations. Consider the
query in Figure 3a: it is unclear whether the user is only interested
in the left-turn motion or if the car’s initial direction also matters.
In such scenarios, re�ning our pre-trained transformer model (that
measures the similarity between query and video) to align more
closely with the user’s intent can enhance result relevancy.

To address this, we develop a human-in-the-loop module called
the Tuner that incorporates explicit user feedback. Speci�cally, the
Tuner allows users to label theMatcher’s outputs as positive or
negative examples. It leverages these labeled examples to rapidly
�ne-tune the Matcher’s transformer model using state-of-the-art
techniques. The �ne-tuned Matcher then generates updated re-
sults with better accuracy.

Contributions. The key contributions of this paper are:
• We develop a VDBMS to address the ease-of-use and generaliz-

ability limitations of SoTA VDBMSs, using a novel architecture
consisting of Sketcher, Matcher, and Tuner (§2).
• We introduce a visual query interface, Sketcher, to query
video moments of object trajectories and trajectory interac-
tions. We illustrate that Sketcher enables users to express
object track queries e�ectively (§3).
• We propose a learned similarity search module, Matcher,
to match user sketches to real-world video moments based
on object trajectories. Matcher leverages a novel synthetic
training data generation method to pre-train a transformer
model on diverse trajectories, thus generalizing across a wide
range of datasets and queries (§4).
• We develop a human-in-the-loop module, Tuner, to accurately

adapt the system to each speci�c query as necessary through
�ne-tuning the learned model based on user feedback (§5).
• We evaluate SketchQL on diverse datasets and show that it
signi�cantly improves the moment retrieval accuracy over
SQL-based and natural language baselines (§6).

2 SYSTEM OVERVIEW

In this section, we present an overview of the key components and
work�ow of SketchQL.

2.1 The Bounding Box Abstraction

Querying raw videos requires extensive training per dataset [23, 39].
To improve generalizability, SketchQL is designed to operate on
top of per-frame object bounding boxes rather than raw pixels,

similar to Miris [9] and STAR Retrieval [12]. Bounding box se-
quences for objects across frames are obtained using pre-trained
object trackers [64] without dataset-speci�c retraining.

Speci�cally, each bounding box � = (G; , ~; , Gℎ, ~ℎ) is deter-
mined by two points - the top right coordinate (Gℎ, ~ℎ) and the bot-
tom left coordinate (G; , ~; ). A bounding box sequence �( (CB , C4 ) =
{�1, �2, ...} for an object consists of bounding boxes tracked over
time, where CB and C4 are the start and end frames. Each object
is de�ned by its type ) (e.g., car) and bounding box sequence
from frames CB to C4 : $ (CB , C4 ) = (), �( (CB , C4 )). We pad frames
that do not contain the object with empty bounding boxes �emp =

(0, 0, 0, 0) to create �xed length sequences between CB and C4 . A
video clip between frames CB and C4 is de�ned as a set of objects
� (CB , C4 ) = {$1 (CB , C4 ),$2 (CB , C4 ), . . . ,$< (CB , C4 )}. The full video +
contains all the objects, with bounding boxes over the entire dura-
tion: + = {$1 (0, Cmax), . . .}. Each clip in + then consists of the sub-
set of objects present in the sub-range of frames [CB , C4 ] ⊆ [0, Cmax].

Admittedly, this bounding box abstraction loses detailed infor-
mation like color and texture from the raw video. However, bound-
ing boxes have proven useful for a wide range of applications [9]
since they enable methods to work across di�erent videos with
minimal adaptation e�orts. Furthermore, the videos retrieved by
SketchQL still contain the original raw pixel information. This
enables applying more �ne-grained predicates (e.g., color detection,
re-identi�cation) beyond the bounding box abstraction if needed.

2.2 SketchQLWork�ow

The overall work�ow of SketchQL is shown in Figure 4. SketchQL
work�ow contains four phases:

(0) Object tracking. This is a one-time pre-processing phase that
converts the raw video into a set of objects + = {$1 (0, Cmax), . . .}

using the bounding box abstraction (§2.1). For each object, apart
from the bounding boxes, object tracking models also provide the
object type information [64]. Once extracted, the resulting+ can be
reused for future visual queries. We use the state-of-the-art object
tracker ByteTrack [64] for this phase. Note that our target usage
scenario is o�ine exploratory video analytics, where users inter-
actively query over bounding box trajectories extracted from the
videos to understand object movement patterns and interactions.

(1) Creating Visual Query. Users compose visual queries using
the drag-and-drop Sketcher interface (Figure 5a). For example, to
query video clips of a car turning left, moving straight, and then
right, the user selects a car object, drags it in a leftward motion, then
straight, and �nally in a rightward motion on the canvas. This drag-
ging motion is automatically recorded as a sequence of bounding
boxes representing the car’s trajectory over time (Figure 5b).

Through these simple drag-and-drop gestures, the user creates a
visual query clip�& containing the desired object motions. The key
challenge is enabling the intuitive composition of complex multi-
object scenes and motions. The Sketcher provides an e�cient
visual interface for this complex query speci�cation (§3).

(2) Similarity search. For a given visual query �& , our goal is
to �nd video clips, each represented by �+ (CB , C4 ), with the highest
similarity to this query.

The key challenge is measuring the similarity B8<(�& ,�+ ) be-
tween the bounding box sequences in the query and video clips.
This measurement is challenging due to variations in camera angles

3
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2
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User
Visual Query

Video

...

Sliding Window

(0) Object 
tracking

Candidate
set

Model

3.1. User
checks clips 

Rank by similarity score

3.2. Fine-tune 
with user labels

3.3. Update 
ranking

(3) TUNER

(1) SKETCHER

(2) MATCHER

Figure 4: SketchQL processes moment queries in four phases - (0) Object Tracking, (1) Sketcher, (2) Matcher, and (3) Tuner.

and movements in real-world videos, such as shown in Figure 1. To
address this, ourMatcher module proposes to pre-train a model
that learns a similarity function B8<({�(1, �(2, ...}, {�(

′
1
, �(′

2
, ...})

between any two set of bounding box sequences where �(8 is the

bounding box sequence of the 8th object in query and �( ′8 is the

bounding box sequence of the 8th object in a video clip. The model
is pre-trained on diverse synthetic trajectories designed to capture
diverse real-world patterns (§4.2). Since videos can be represented
as bounding box sequences across domains, our pre-trained model
generalizes to real-world datasets with zero or minimal adaption,
as evidenced by our experiments.

The Matcher uses the pre-trained model to retrieve the clips
via a sliding window similarity search, as shown in Figure 4. First,
it identi�es the candidate clips by iterating over all combinations of
objects within each sliding window that matches the query object
types. It then uses the pre-trained model to measure the similarity
between the query bounding boxes and each candidate clip and
retrieves the top : clips with the highest similarity scores (§4.3).

(3) Incorporating user feedback. The pre-trained model in
Matcherworks well across datasets. To further boost performance,
we allow adapting the model speci�cally to each query. To support
this, we introduce a Tuner module that can adapt the pre-trained
model by incorporating user feedback at query time. Speci�cally,
the Tuner enables users to provide additional feedback by labeling
candidate clips as positive or negative examples. The Tuner uses
these labels to �ne-tune the pre-trained model to the speci�c query.
The �ne-tuned model re-predicts similarity scores for the candidate
clips, re-ranking the results. Users can iteratively provide more
feedback to further re�ne the model and rankings.

In the following sections, we present the internals of the three
core components of SketchQL. We discuss the visual query inter-
face, Sketcher, in §3. We then describe theMatcher’s synthetic
data generation and learned similarity search methods in §4. Fi-
nally, we discuss the Tuner’s �ne-tuning strategy to improve the
accuracy of theMatcher in §5.

3 SKETCHER: COMPOSING VISUAL QUERIES

This section describes our proposed visual query interface, the
Sketcher. In contrast to SQL’s textual syntax, the Sketcher uses a

Car

Car

Car

Car

3Car

Car

Car

2

1

(a) Canvas.

time

obj1

obj2

obj3

1 2 3

(b) Trajectory Panel.

Figure 5: Sketcher Interface

visual query language comprised of visual components to construct
trajectories of objects and represent relationships between them.
The Sketcher has two components: (a) The Canvas. This is a
whiteboard where users can place and drag objects to compose
clips, as shown in Figure 5a. (b) The Trajectory Panel. This is a
panel where users can adjust multiple trajectories of the same object
and align the trajectories of di�erent objects (shown in Figure 5b).
These visual components make it easy for users to create query
clips visually by allowing the following actions:
(1) Object Creation. This action allows users to select an object
type (e.g., through a drop-down menu) and place the object on the
canvas. Users can create an object of a speci�c type (e.g., car) or
an Any type that encompasses all types of objects that the object
detection model can identify.
(2)Trajectory CreationwithDrag andDrop. When a user moves
an object on the Canvas via drag-and-drop, all the coordinates of the
movements are automatically recorded as bounding box sequences
�( . This way, both the query clip and the video clips are represented
in the same bounding box format. We record trajectory as it is with
possible noise and design theMatcher to be noise-tolerant.
(3) Trajectory Editing. To enable users to compose complex mo-
tions intuitively, the Trajectory Panel allows users to edit and com-
pose multiple trajectories (of multiple objects). In other words, users
do not have to create a complete query in one pass and can create
a query one segment by segment. The Trajectory Panel is similar
to the soundtrack panel in existing audio editing tools.

Consider a scenario where the user wants to identify clips in
a tra�c surveillance video stream where a car �rst takes a left
turn, then goes straight, stops for a while, and then takes a right
turn (Figure 5a). To achieve this, the user �rst creates a car object

4
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on Canvas. The user then drags the car object to make a left turn
(indicated by the red dashed arrow in Figure 5a) to specify the query
trajectory. Once the object is released from the dragging motion, the
trajectory is automatically recorded and appears on >1 91’s timeline
in the Trajectory Panel (The red "1" box in Figure 5b). Similarly,
the user creates a second trajectory by dragging the car object in a
straight line (blue dashed arrow in Figure 5a), resulting in a second
trajectory box on the timeline. Users can shift these trajectory boxes
on the timeline to change the ordering of the two events or to adjust
the duration of the car’s stationary period. Additionally, users can
also adjust the length of the trajectory boxes along the timeline to
change the speed of the movements. For complex queries involving
multiple objects, users can repeat these steps. For example, they can
add a pedestrian object, set its trajectory, and adjust the trajectory
boxes of the pedestrian and the car to de�ne temporal correlations
between them in the Trajectory Panel.

Query Compilation. Query compilation converts the object
trajectories created on the Canvas into a query clip �& (0, C4 ) =

{$1,$2, ..., } (de�ned in §2.1) by recording the bounding box se-
quences for each object’s trajectory.

Limitations of Visual Querying. Due to the inherent nature of
a visual interface, visual querying is best suited for queries that can
be expressed by sketches, such as arbitrary movement patterns of
objects. Currently, the unsupported types of queries include:
1. summarization queries – e.g., count number of cars in a frame

2. queries with hard constraints – e.g., Speed(car) > 30 km/h or
Speed(car) is larger at one part of trajectory than another part.

3. semantic queries – e.g., person laughing
It is possible to extend visual querying to support type 2 and type
3 queries by adding additional annotations (e.g., velocity, activity
class) to the objects, which we leave as future work.

4 MATCHER: IDENTIFYING SIMILAR CLIPS

The Matcher aims to identify video clips �+ that are most similar
to a given visual query �& . The pseudo-code for the similarity
search algorithm is shown in Algorithm 1.

We perform a sliding window similarity search where the default
window size is the duration of the query. As indicated in Line 4, we
vary the window size by di�erent scales to consider candidate clips
with a di�erent duration from the query. At Line 6, we iterate over
all possible clips (combinations of objects) of sub-video beginning at
CB and ending at C4

1. For each clip�+ , we check whether it is a valid
candidate that contains the same number of objects and the same
object types as the query�& at Line 7. For a valid candidate clip, we
obtain its similarity score with the query using a similarity function
B8<(�& ,�+ ). Finally, we handle temporally overlapping clips with
identical objects from Line 9 to Line 14. For instance, if one clip
spans from time [0, 10] and another similar clip from [1, 11], only
the clip with the highest score is retained. Optionally, SketchQL
also allows �ltering candidates with user-de�ned functions (UDFs)
in a pre-processing step before the similarity search or a post-
processing step after the search to support semantic queries and
queries with hardcoded parameters.

1Note that this step is just for conceptual illustration; there are more e�cient ways of
implementing this without requiring iterating over all the clips.

Algorithm 1: Similarity search

Input: Query�& , Video+ , similarity function B8<, number of

clips : to be retrieved

Output: top : clips with highest similarity scores

1 Let CF be the duration of�& and Cmax be the length of+ .

2 Let ( be the set of candidate clips.

3 for CB ← 0 to Cmax do

4 for scale in [0.5, 0.75, 1, 1.25, 1.5, 2] do

5 C4 = CB + CF*scale

6 for�+ be a clip with subset of objects in+ (CB , C4 ) do

7 if �+ has same num and type of objects as�& then

8 score = B8< (�& ,�+ )

9 if objects in�+ makes up a clip�′
+

in ( then

10 if �+ and�′
+

have no temporal overlap then

11 ( .append(�+ )

12 else if score of�+ is higher then

13 replace�′
+

with�+ in ( .

14 end

15 else

16 ( .append(�+ )

17 end

18 if len(()>: then

19 Pop the clip with the smallest score in (

20 end

21 end

22 end

23 end

24 end

25 Optional: �lter ( with UDFs.

26 return (

4.1 Challenge: Measuring Similarity

The core objective in similarity search is de�ning the similarity
function B8<(�& ,�+ ). For our target object track queries, variable
camera perspectives and movements pose a major challenge: for ex-
ample, the same moving objects can have di�erent trajectories and
sizes when recorded by cameras from di�erent angles as illustrated
in Figure 6. Ideally, our similarity function must remain una�ected
by camera angles since users may describe object movements from
perspectives di�erent from the video’s actual viewpoint. Another
challenge is the camera movements caused by environmental fac-
tors such as wind and vibration. Users might assume a stationary
camera when specifying queries, but SketchQL needs to identify
relevant events despite minor camera movements.

Baseline: Classic Distances on Manual Features. A naïve solu-
tion is to use classic distance metrics like Euclidean distance and
DTW distance [57] to measure the similarity on manually extracted
features (e.g., position and angle of objects.), which reduces the
problem into a relational time series query problem. However, this
approach does not work well, as we verify in our experiments
in §6.4. We observe that the classic distance metrics are sensitive
to camera angles and noises like camera movements.

Instead, we propose to train an end-to-endmodel that takes in�&
and �+ as input and outputs a similarity score. The model encodes
the trajectory similarities into distances in the learned embedding
space, thus obviating the need for manual feature engineering. The
learned model is also trained to ensure the similarity is robust to
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Figure 6: Camera perspective variations - the same trajectory can

appear di�erent when recorded from di�erent camera angles.

camera angles and noises. We discuss how to obtain training data
for the model in §4.2 and how to design an e�ective architecture
and training procedure in §4.3.

4.2 Scalable Training Data Generation

Obtaining labeled training data is challenging for two reasons: (1)
A large amount of labeled data is needed to train an accurate model,
and (2) For the trained model to work across domains out of the
box, the training data must be as diverse and generic as possible.
Inspired by the wide adoption of simulators in generating training
data for autonomous driving models [19, 47], we propose synthe-
sizing labeled training data using a custom trajectory simulator.
The simulator operates on top of the bounding box abstraction,
enabling it to synthesize trajectories across video domains.

The high-level idea of our simulator is to generate motions in
a 3D space and create 2D video clips by recording the event from
virtual cameras placed at random locations in the 3D space. In-
tuitively, 2D video clips from the di�erent cameras of the same
3D clip are positive (similar) examples, and 2D video clips from
di�erent 3D clips are negative (dissimilar) examples. We also insert
random variations (e.g., �ipping, shifting, and white noise) into
the bounding box sequences of positive examples to simulate real-
world variations. We do not consider object types during training
data generation, as clips whose object types do not match those of
the query are automatically skipped in Algorithm 1 (Line 7).

3D-Clip Generation. To generate a 3D clip with a single ob-
ject represented as a 3D box, we use the following method. For
clips with multiple objects, this process is repeated. The object’s
dimensions–width, length, and height–are uniformly sampled from
(0,0.1). Note that these dimensions may appear di�erently in a 2D
video representation based on the object’s distance from the camera.
The object is placed at (G0, ~0, 0) in a 3D space, where G0 and ~0 are
randomly sampled from [0, !max], with !max = 2 being a reference
scale for the object trajectory.

We make the object perform a randomwalk in the x-y plane over
a frame count =frame, which is randomly sampled from [100, 1000].
Since real-world objects do not frequently change their velocities,
we randomly select =change (sampled from [0, 10]) frames where
the object changes its velocity while the velocity remains constant
at all other frames. The object’s x and y velocity at each frame are
sampled from [−!max/100, !max/100], so that the trajectory is at
the scale of [!max, 10!max].

To obtain the corresponding 2D clip from the 3D clip, a pin-hole
projection is performed based on the camera’s location and orien-
tation [15]. This projection retains expected camera characteristics,
such as size scaling with proximity. The 3D box is then projected
into a 2D polygon, which is then enclosed by a minimum bounding
box to create sequences of 2D bounding boxes for each object.

Figure 7: Encoder architecture for trajectory representations.

Positive & Negative Example Generation. Users may create
visual queries based on one perspective while the actual video is
recorded from another angle. Despite these di�ering viewpoints,
both clips originate from the same 3D event (Figure 6) and should
therefore have a similarity score of 1. Leveraging this insight, we
propose to generate positive and negative training examples as
follows: pairs of 2D clips recorded by di�erent cameras serve as
positive examples, and pairs of clips capturing di�erent events are
negative examples. We ensure the two clips in one negative pair
have the same number of objects to avoid trivial negative examples.

To further improve the robustness of the trained model, we inject
the following random variations into each clip:
• random �ipping horizontally or vertically;
• random rotation by a random angle;
• random white noise on the coordinates at each frame;
• randomly dropping [0, 20%] frames in the beginning and end;
• randomly warping the frames, e.g., [f1,f2, f3, f4, f5, f6] becomes
[f1, f3, f5, f5, f6, f6] where we speed up the �rst half and slow
down the second half.

We apply each variation to the clip with a 50% probability. For
variations with parameters (e.g., rotation angle), parameters are
sampled randomly.

4.3 Learned Similarity Function

Our goal is to train an encoder model that e�ectively learns object
trajectory representations. The model �rst encodes the input -+
(and -& ) into an embedding vector 4+ (and 4& ). The similarity be-
tween the query and a video clip is obtained as the cosine similarity
between their embedding vectors: B8<(�& ,�+ ) = 2>B (4& , 4+ ).

Figure 7 shows our proposed encoder architecture. An MLP
�rst encodes object trajectories in each video frame into a lower-
dimensional embedding vector of dimension 128. These embed-
dings, along with the positional encoding of the frame position,
are fed into a transformer encoder to encapsulate spatial-temporal
information across frames. We use learnable positional embeddings
for each frame position and four transformer encoder layers [3].
Following the standard practice, we use the embedding at position
0 in the transformer’s output as the �nal output embedding.

This architecture also allows for e�ciency improvements. For
example, during preprocessing, we can encode all video clips into
embeddings and build an index for all the embeddings based on
cosine similarity (e.g., using LSH [7]). Subsequent user queries
are then quickly processed through this index. We considered an
alternative model architecture (Figure 11) that uses a cross attention
module [30] and an MLP classi�er. However, our evaluation (§ 6.4)
shows that the MLP classi�er easily over�ts the training data.

Let 4anchor denote the encoded embedding of an anchor clip;
let 4pos and 4neg denote the encoded embedding of the anchor’s
positive clip and negative clip generated via the simulator. We have
the following intuitions for training:
• Wewould like to maximize the di�erence3sim between the sim-

ilarity score of the anchor to the positive clip 2>B (4anchor, 4pos)
large and that of the anchor to the negative clip 2>B (4anchor, 4neg)).
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• Consider two scenarios: (1) 2>B (4anchor, 4pos) = 0.99 and
2>B (4anchor, 4neg) = 0.89; (2) 2>B (4anchor, 4pos) = 0.39 and
2>B (4anchor, 4neg) = 0.29. In both cases, 3sim = 0.1. Intuitively,
in scenario (1), we should make 2>B (4anchor, 4neg) small as it
is almost not possible to make 2>B (4anchor, 4pos) larger. In con-
trast, in scenario (2), we should focus onmaking 2>B (4anchor, 4pos)
larger as the score is too small for a positive clip.

We use circle loss [50] as our objective function as it incorporates
both of the above intuitions. During training, we generate random
training data on the �y for each batch to maximize data diversity.
We train the model until training loss converges.

Data normalization. We transform each 2D clip generated from
the simulator to a suitable input format for the encoder model as
follows.We �rst normalize the bounding box coordinates using their
mean and standard deviation. Since it is easier for neural networks
to use �xed-size input, we sub-sample or over-sample uniformly
to ensure the clips �& and �+ have a �xed 128 frames, which is
enough to represent a 1-minute video and is still understandable to
humans. We limit our focus to at most four objects per clip, given
that most queries usually involve only a few objects. In scenarios
with fewer than four objects, we pad the sequence with zero-valued
bounding boxes. Therefore, �& = {$1,$2,$3,$4} includes four
sequences of bounding boxes, where each sequence$8 has a length
of 128. We concatenate the four values of the bounding boxes for
four objects in each frame and obtain a matrix -& with size 128x16,
which is used as input for the model. We obtain-+ for�+ similarly.

5 TUNER: INCORPORATING USER FEEDBACK

The trained encoder model serves as a cold start to query similar
clips, and our experiments have shown that this already exceeds
baseline performance (Section 6.2). However, given the ambigu-
ous nature of visual content, there could be di�erent user intents
even with the same visual query. For example, consider the car
making a left turn, then moving straight, and then a right turn
query in Figure 4. The user might want the clips where the car
eventually moves southward, or the user may not care about the
direction at all. Therefore, we incorporate user feedback to adapt
the pre-trained model to the user query at hand to better capture
user intent by learning from the feedback.

The feedback-learning process works as follows. We �rst present
users with clips retrieved by the default model sorted by similarity.
The user then reviews these clips and labels some of them as either

’good’ or ’bad’ examples (e.g., labeling the 1st and the 3rd examples

as positive and the 2nd and 4
th examples as negative). The Tuner

uses this feedback to adapt the pre-trained model and re�ne its
understanding of the user’s intent and preference. We can repeat
this feedback loop until the user is satis�ed with the results.

One challenge we face is the limited amount of labeled examples
from user feedback. Therefore, we need the learning process to be
e�ective while preventing over�tting. We develop four techniques
to learn from limited user feedback e�ectively:

Data Augmentation. We augment the user-provided labeled ex-
amples by performing random rotation on the bounding box se-
quence and adding random white noise to each bounding box. We

use data augmentation to generate three times the number of nega-
tive examples and then generate positive examples to ensure the
number of positive pairs matches the number of negative pairs.

Fine-tuning. Let (�pos and (�neg denote the set of labeled positive
examples and negative examples respectively after data augmen-
tation. To simplify notation, we add the query �& into (�pos, i.e.,
�& ∈ (�pos, because the synthetically created query �& is a posi-
tive example just like any other positive examples labeled by user.
During �netuning, any pair of examples �8 ,� 9 where �8 ∈ (�pos

and � 9 ∈ (�pos serve as a positive example for the model, and any
pair of examples �8 ,� 9 where �8 ∈ (�pos and � 9 ∈ (�neg serve as
a negative example for the model.

Intuitively, when there are more labeled examples, we trust the
labeled examples more and �ne-tune the model for more steps;
when there are fewer labeled examples, we trust the pre-trained
model more and �ne-tune the model for fewer steps to avoid
over�tting. Therefore, we set the number of �netuning steps as
√

|(�pos | + |(�neg |, proportional to the number of available labeled
examples |(�pos | + |(�neg |.

Layer-wise Decreasing Learning Rate. A typical practice is
to �ne-tune only the last layer(s). This works well when the �rst
layers of the pre-trained model can recognize almost all common
low-level features for the task. For example, when adapting models
pre-trained on ImageNet to downstream tasks, one only needs to
�netune the last layers as the images in ImageNet include almost
all possible low-level image features, and one only needs to adapt
the high-level semantic features.

However, in our case, the model is pre-trained on synthetic data,
which might lack some low-level variations in real data. Therefore,
we propose �ne-tuning all layers so that the model adapts low-level
and high-level semantic features. Fine-tuning all layers can easily
lead to over�tting. Inspired by existing work on �ne-tuning large
language models [49], we use layer-wise decreasing learning rates,
assigning lower learning rates to the �rst and larger ones to the last
layers. Speci�cally, we use learning rate 14−5 (same as the learning
rate used for pre-training) for the �nal layer and decay by a factor
of 0.5 for each previous layer.

Augmenting Query Set with Found Positive Examples. Intu-
itively, any positive examples from the user feedback can serve as
our query. Since these examples are from the actual video, using
them as the query might increase recall. Therefore, we augment
the query with user-labeled positive examples. Speci�cally, for the
original sketched visual query, we obtain a similarity score ~8 for
each video clip. Similarly, for each labeled positive example � 9 , we

obtain a similarity score ~
9
8 for each clip. Let’s say there are #pos

positive examples. We obtain a �nal similarity score by incorporat-

ing all positive examples as ~∗8 =

~8+
∑

9 ~
9

8

1+#pos
. We then use ~∗8 as the

prediction for each video clip and rank the clips based on ~∗8 .
During the user-feedback loop, the number of found positive ex-

amples #pos increases. Since we need to use each positive example
as the query for prediction, the time complexity increases. However,
this can be easily parallelized. In addition, we expect the user to
only label a few examples (and even fewer positive examples), so
the increased time complexity is computationally tractable.
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6 EXPERIMENTS

In our experiments, we demonstrate the e�ectiveness of SketchQL
by investigating the following questions:
• Howdoes SketchQL compare against state-of-the-art approaches
in accurately retrieving relevant video moments? (§6.2)
• How does SketchQL’s visual query interface compare to nat-

ural language- and SQL-like interfaces in its ease of use? (§6.3)
• How much do each of SketchQL’s components contribute to
the �nal accuracy? (§6.4).
• What is the runtime performance of SketchQL? (§6.5)

6.1 Experimental setup

Datasets.We use the following datasets:
• VIRAT [42]. This is a tra�c surveillance video benchmark
dataset used extensively in the computer vision community.
We use the longest video from the dataset with 7k frames.
• BDD100k [58]. This is a driving video dataset of dashcam
footage. We use a subset of 3.5k frames from the dataset.
• SoccerNet [24]. This is a dataset of broadcast soccer games

and is a popular benchmark dataset. We use the labeled subset
(with ground-truth object tracking results) totaling 43k frames.
• YouTube-8M [6]. This is a public video classi�cation dataset
with YouTube videos from diverse domains.We use a Broadcast
American college football video containing 11k frames.

Three datasets, VIRAT, BDD100k, and YouTube-8M, do not have
ground-truth object bounding box trajectories, so we use Byte-
track [64] object tracker to obtain the object bounding box trajecto-
ries. The SoccerNet dataset has ground-truth object bounding box
trajectories, and each person object has the annotation "player_left"
for players in the left team and "player_right" for players in the
right team. Notably, our method does not access the datasets during
pre-training; datasets are only used during evaluation and to �ne-
tune our model in the user feedback learning experiment in §6.2.3.
The tra�c datasets VIRAT and BDD100k have stable cameras in
most frames, while the sports broadcast datasets SoccerNet and
YouTube-8M contain camera movement and are more challenging.

Baselines. We evaluate SketchQL against these baselines:
• NL-Clip. This method uses a natural language interface. Simi-
lar to Zelda [46], it is adapted from the large vision-language
model Clip from OpenAI [43]. It is trained on a large corpus
of image-text pairs. Given a text query, it retrieves relevant
frames from the video.
• NL-2DTAN [62, 63]. This is a popular natural language-based

method for video moment retrieval that is trained directly on
video clips and associated captions. Since we consider the zero
training data scenario, we use a pre-trained version of 2DTAN
that was trained on ActivityNet [10]. We observed that 2DTAN

has zero retrieval accuracy on all the queries in our datasets since

the videos di�er from the training set, so we omit this baseline

from our results.

• SQL-Track. This method uses a SQL-like interface where
users can retrieve video clips by writing rules over object
trajectories. Notably, similar to SketchQL, it uses object tra-
jectories as the primitive. This baseline is similar to Miris [9].
Both methods return the same output clips, while Miris addi-
tionally accelerates the query execution.

Dataset Query ID Query

VIRAT
Q1.1 A car makes a left turn [9].

Q1.2
A car makes a left turn and then a
right turn.

Q1.3
A car stops to yield to a pedestrian
that crosses the road.

BDD100k Q2.1
A pedestrian crosses the street on a
crosswalk [9, 46].

SoccerNet
Q3.1 A player kicks the ball [20].

Q3.2 A player kicks the ball into the air.

Q3.3
A player passes the ball to one of his
teammates but an opponent player
tries to intercept the ball.

YouTube-8M
Q4.1

An opponent tackles a running
player in an American football match.

Q4.2
A player dashes forward with
two other players running behind.

Table 2: Queries for each dataset.

• SQL-Scene. This method also uses a SQL-like interface where
users retrieve video clips bywriting rules over scene graphs [33].
We use the state-of-the-art model [56] to extract scene graphs
for this method. This baseline is similar to EQUI-VOCAL [60]
on scene graphs. The main di�erence is that, unlike EQUI-
VOCAL,where queries are synthesized automatically, SQL-Scene
queries are constructed by users with best e�orts over the
scene graphs.

For a fair comparison, the main results are reported without
user feedback learning. We evaluate the impact of user feedback
learning on SketchQL in §6.2.3.

Setup For all methods. For SketchQL, we pre-train on syn-
thetic data using the Adam optimizer at a learning rate 14−5 and
a batch size of 500. We generate training data on the �y for each
batch to ensure maximum training data diversity. We train the
model until convergence, which takes about 7 days on an A40 GPU.

We use the pre-trained ViT-B/32 model for NL-Clip [1] and the
pre-trained PSGTRmodel with a ResNet-50 backbone for SQL-Scene
[2]. Since NL-Clip and SQL-Scene operate on individual frames,
we �rst retrieve the top-K similar frames and generate video clips
using a �xed number of frames before and after the matching frame.
For SQL-Track, we implement handcrafted rules for each query
in Python (similar to Listing 1) with up to 100 minutes per query
for rule creation and manual parameter tuning to optimize perfor-
mance. Rules are reused where possible across queries.

�eries. Table 2 presents the queries evaluated for each dataset,
where citations denote that the same queries were used in the cited
papers. Not all queries used in prior works are supported by our vi-
sual interfaces (discussed in § 3), and we have included new queries
that emphasize the movement patterns of objects. Each query is
created using the interface supported by its respective method:
natural language for NL-Clip, a SQL-like language (i.e., rules) for
SQL-Track and SQL-Scene, and visual queries for SketchQL. Ta-
ble 3 shows how query Q3.1 is represented in each of the baselines.
We also include samples of found clips by SketchQL for the queries
in our artifacts [4].

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SketchQL: Video Moment �erying with a Visual �ery Interface Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

NL-Clip SQL-Track SQL-Scene SketchQL (w/o feedback)

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2
0.00

0.25

0.50

0.75
Unsupported

A
v
e
P
sc
o
re

�eries

Figure 8: AveP score comparison of SketchQL (without user feedback) against other baselines

Method Query format

NL-Clip "A player kicks a ball on a soccer �eld"

SQL-Track

SELECT person, ball FROM ObjectTrackUDF(video)

WHERE MinDistance(person, ball)=0

AND RelativeSpeed(person, ball)>0

AND BBoxY(ball) >= 0.75*BBoxY(person)

AND BBoxY(ball) < BBoxY(person)

SQL-Scene

SELECT frame, graph FROM SceneGraphUDF(video)

WHERE graph.subject="person"

AND graph.predicate="kicking"

AND graph.object="ball"

SketchQL

Person

Person

Ball

Ball

Ball

1

2

3

Table 3: Query speci�cation in SketchQL and other systems.

Performance Metric. Performance metrics like precision and
recall do not account for clip ranking. Since we favor true posi-
tives ranked higher, we adopt the AveP score, commonly used in
information retrieval, as our performance metric [36, 45]. Using the
top-k retrieved clips, precision and recall are calculated for each : .
As : increases, the recall improves. Let ? (A ) denote the precision
at recall A . AveP is de�ned as the area under the precision-recall

curve [16]: AveP =

∫

1

A=0
? (A )3A . Intuitively, AveP is higher when

more true positives are ranked higher, with the maximal AveP=1
when all =pos positive instances are ranked in top =pos. A clip is
considered to be a positive match if its overlap ratio (size of inter-
section/size of the union) with a ground-truth clip is more than 50%.
The ground-truth clips are obtained by our manual inspection of
each video in all datasets. For each query, we consider top 10×=?>B
clips from each method to numerically compute the AveP score
where =?>B is the number of ground-truth positive examples.

Hardware Setup. We run the experiments on a server with one
NVIDIA A40 RTX GPU, 120 Intel CPU cores, and 384 GB of RAM.
We use the GPU for object tracking, model training, and inference.

6.2 End-to-end Query Performance

6.2.1 �antitative Results. We execute the query for each system
and evaluate the quality (measured by AveP) of the retrieved results.
The results are shown in Figure 8.

The natural language-based method NL-Clip has a low AveP
score on six of the nine queries. This is because natural language-
basedmethods require training on a large amount of labeled data for
each dataset to perform well. Additionally, NL-Clip only supports

frame-level querying. This results in its satisfactory performance on
Q2.1 and poor performance on temporal queries such as Q1.3. We
tested a di�erent natural language method, 2DTAN, for video-level
querying. However, we observed that 2DTAN achieves a 0 AveP
score on all the queries. In our "zero-shot" scenario with no training
data for each dataset, pre-trained natural language-based methods
do not generalize well due to data distribution di�erences from
their original training set. Finally, we observe that NL-Clip per-
forms better when the query can be identi�ed using keywords. For
example, Q4.1 is more heavily dependent on the keyword "tackle",
which allows NL-Clip to retrieve some relevant clips.

SQL-Track is the best-performing baseline method. SQL-Track
operates on object trajectory primitives that can be obtained more
reliably across datasets. As long as the user writes good UDFs
(i.e., rules), it can achieve good performance. At the same time, its
performance is limited due to the reliance on the user’s expertise
to write good UDFs. For example, for Q1.1, the rules written by
a graduate student got a 0 AveP score. The student had to debug
and tune the parameters multiple times to achieve the reported
performance, which was a time-consuming and tedious process.

SQL-Scene does not support four of the nine queries. While Q1.1
and Q1.2 are single-object queries (involving only one car) that can-
not be represented by scene graphs, Q3.2 and Q3.3 involve complex
actions (e.g., kicking the ball into the air) that are unavailable in the
scene graph taxonomy. SketchQL outperforms SQL-Scene in all
the supported queries. We observe that the pre-trained scene-graph
models do not generalize well and perform poorly on di�cult sports
broadcast datasets with more camera movements.

Overall, SketchQL outperforms all the baselines by 20% on aver-
age. This is because (1) similar to SQL-Track, SketchQL leverages
object trajectories that can be obtainedmore reliably across datasets,
and (2) unlike SQL-Track, SketchQL does not rely on the user’s
expertise to write good UDFs; users can easily create the queries
by simple drag-and-drop gestures.

Limitations. SketchQL’s performance declines in four scenarios:
(1) Object tracking failures. State-of-the-art object trackers like
Bytetrack [64] do not perform well when there is occlusion, causing
tracking failures (e.g., trees blocking cars in VIRAT [42]).
(2) Unstable camera. Camera movement adversely a�ects the rela-
tive trajectories of objects. For instance, a windy environment in the
VIRAT dataset leads to camera shakes. This results in SketchQL

retrieving some cars moving straight but appearing to turn left.
(3) Loss of semantic information. SketchQL relies on bounding
boxes, so it loses some semantic information. Nevertheless, SketchQL
can be used to retrieve the "syntactically" correct clips, and then a
more expensive semantic model can be used for further �ltering.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Stationary parked Car

NL-CLIP SQL-TRACK SQL-SCENE SKETCHQLQUERY

Q1.3 A car stops
to yield to a 
pedestrian that 
crosses the road.

Q3.1 A player kicks 
the ball in a 
soccer match

Person behind car Correct

CorrectNo ball in image Ball flying past

Q: Person “In front of” Car

Player misses bouncing 
ball

Q: Person “Kicking” Sportsball

Stationary parked Car

Figure 9: Qualitative comparison of SketchQL against other baselines. Details of the failures discussed in §6.2.2.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

w/o Feedback 0.87 0.60 0.56 0.80 0.52 0.39 0.38 0.36 0.31

w/ Feedback 0.93 0.73 0.56 0.80 0.58 0.44 0.58 0.36 0.31

Table 4: Performance of SketchQL without and with user feedback.

(4) User intent ambiguity. Users may sketch the same visual query
for di�erent intents. To address this, SketchQL supports a post-
processing step where users can use rules like SQL-Track to �lter
out clips. Since writing rules is di�cult, SketchQL can also re�ne
results for each query by learning from user feedback (i.e., labels)
on retrieved clips (§6.2.3).

6.2.2 �alitative Results. The qualitative results for di�erent sys-
tems are shown in Figure 9. Both NL-Clip and SQL-Scene works
best when processing individual frames, so they fail to recognize
clipswithmoving cars inQ1.3. In contrast, SketchQL and SQL-Track
use trajectory-based matching to accurately detect object move-
ment. Additionally, NL-Clip’s pre-trained model struggles to detect
the ball in Q3.1. The object tracking primitives used by SketchQL

and SQL-Track better handle such di�cult detections. SQL-Track
heavily relies on the user’s expertise to write proximity and dis-
placement rules to identify individual object movements. However,
these rules written within a limited time span are prone to errors.
For example, in Q3.1, we observe that SQL-Track incorrectly re-
trieves clips that contain the ball �ying past a player since they
match all the rules for player kicks ball. In contrast, SketchQL does
not rely on the user’s expertise and can accurately match the visual
queries to the video moments using the learned model, making it
less prone to errors.

6.2.3 �ery Performance with User Feedback. We evaluate the per-
formance of SketchQL with human feedback. Since the baseline
methods do not support learning from user feedback, we only show
results for our method. We initially run SketchQL with the visual
query and label the top-5 retrieved clips. We then incorporate this
feedback using the process described in §5 to re�ne the model. Fi-
nally, we retrieve clips with the re�ned model and report the AveP
score on the newly retrieved clips.

The results are shown in Table 4. Overall, by incorporating user
feedback, the performance is improved in 5 out of 9 queries by
5.5% on average. However, incorporating the feedback does not
change the performance in a few cases: (1) The top 5 clips are all
correct (e.g., for Q2.1), so the feedback does not provide additional
information. (2) The performance is limited by the noise in the

video (e.g., Q4.1 and Q4.2), including camera movements and object
tracking errors.

6.3 Ease-of-use Evaluation

6.3.1 User E�ort. We investigate the amount of user e�ort, mea-
sured in time, required to express the queries using di�erent query
interfaces. Table 5 shows the time taken for a graduate student
to compose each query via each interface. This time includes the
duration from the start of the query composition to the point of
achieving a fully functioning query.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

NL-Clip <1 <1 <1 <1 <1 <1 <1 <1 <1

SQL-Track

(from scratch)
90 100 20 40 10 90 40 100 45

SQL-Track

(reuse rules)
90 10 20 30 10 30 20 80 30

SQL-Scene - - <1 <1 <1 - - 2 <1

SketchQL <1 <1 2 <1 2 2 4 4 3

Table 5: Query composition time (minutes) for di�erent interfaces.

NL-Clip requires the least time as the user can trivially express
each query in natural language. For SQL-Track, we report two
variants: (1) From scratch - wherewewrite the required rules (UDFs)
from scratch for each query (2) Reuse rules - where we develop
queries one at a time, and for each query, we reuse existing rules
from previous queries where possible. In both cases, SQL-Track
requires signi�cantly more time than other methods since it is
non-trivial to express notions like "left-turn" with SQL-like rules.

SQL-Scene requires low e�ort to represent the query, as the user
can de�ne the query as a relationship between objects detected in
the scene graphs. For example, query Q2.1 can be represented in
the scene-graph model as the (subject, relationship, object) tuple
of (’person’, ’kicking’, ’ball’). However, scene graph models only
support simple relationships between the subject and object, such
as ’kicking’, ’in front of’, ’on’ etc. So, non-trivial events such as the
orientation-agnostic left turn of a car or a player kicking the ball
into the air cannot be retrieved using this baseline.

In contrast, users can e�ciently compose all queries in SketchQL
by simply dragging and dropping the objects with the mouse in
any direction. Generally, SketchQL requires more time when more
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+ Rotation degrees + Noise level

Q1.1 90 180 270 5% 10% 15%

AveP score 0.87 0.86 0.87 0.87 0.87 0.85 0.82

Table 6: Performance of SketchQL onQ1.1 under 1) di�erent degrees

of rotation and 2) di�erent levels of white noises.

objects are involved in the query as one needs to create each object
individually and align their motions using the Trajectory Panel.

Car
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Figure 10: Variants of user sketches for the left turn query.

6.3.2 �ery Sensitivity. This experiment measures the sensitivity
of the system to user sketches. For example, Figure 10 shows dif-
ferent ways a user can depict a left turn query. We observe that
SketchQL produces similar AveP scores for all the variants without
any �ne-tuning. This can be attributed to SketchQL’s synthetic
training data generation process that automatically generates a
diverse set of trajectories, described in §4.2. In contrast, baseline
methods like SQL-Track require writing new rules to support each
variant.

For a more quantitative assessment, we consider two variations:
rotation and white noise.
Rotation. Table 6 shows the AveP scores under query rotations
of 90, 180, and 270. The scores remain stable under di�erent de-
grees of rotation. We observe the rankings of the retrieved clips are
almost identical, with only minor variations like the 5th and 6th
clips swapping places. Thus, SketchQL is robust to di�erent query
rotations. The robustness stems from our training data generation
method that considers rotation variation.
White Noise. We add white noise to the query to simulate wobbly
trajectories in the query that humans may create when drawing
queries by hand/mouse. We set the magnitude of the white noise
to 5%, 10%, and 15% of the scale of the query trajectory (measured
by the standard deviation of coordinates). The results are shown in
Table 6. When the noise level increases, the AveP score decreases.
However, the system remains robust, maintaining performance for
noise up to 10% of the overall query trajectory scale.

To summarize, SketchQL is robust to di�erent user sketch vari-
ations, so query speci�cation is easy.

6.4 AlternativeMatcher Designs

We evaluate alternative designs of the Matcher component dis-
cussed in §4.3. Speci�cally, we consider (1) replacing the learned
model with classic time series similarity search using manually
extracted features and (2) using a di�erent model architecture.
Time series similarity search withmanual features. This is the
baseline we discussed in § 4.1 where we convert the problem to a
time series similarity search under Euclidean or DTW distance [57].
We manually extract diverse features using domain knowledge. The
features include (1) absolute positions, i.e., trajectories, (2) velocities,
(3) angles, and (4) relational features (e.g., distances) between object

Figure 11: Alternative Model Architecture

pairs. We also normalize each feature to ensure all features are at
the same scale. We use Euclidean distance (DTW distance gives
similar results) to compute the similarity between the query and
video clip features. We also manually tune the weights for each
feature dimension to give this baseline an advantage.
Alternative model architecture. When encoding clip �+ , one
intuition is to be aware of the query �& . For example, if the query
trajectory is circular, the model could focus more on trajectory
features in �+ to match that pattern. This motivates the model
architecture shown in Figure 11, which features a cross-attention
module [30] for the clip and query to pay attention to each other.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

SketchQL 0.87 0.60 0.56 0.80 0.52 0.39 0.38 0.36 0.31

*manual feat 0.24 0.0 0.12 0.49 0.21 0.17 0.08 0.13 0.15

*alt arch 0.28 0.17 0.56 0.61 0.42 0.21 0.27 0.28 0.24

Table 7: Ablation Study: AveP scores.

As shown in Table 7, replacing any component substantially
decreases performance, especially when using manual features
with classic distance functions instead of the pre-trained model.
This is because (1) metrics like Euclidean distance and dynamic
time warping are not invariant to di�erent camera angles (Figure 6),
while the learnedmodel ensures invariance; (2) Themanual features
are limited by human knowledge of crafting the features while the
learned model can consider subtle features that are less obvious to
humans; (3) It is very di�cult to manually balance the importance
of di�erent features. The alternative architecture performs poorly
because it has a built-in MLP classi�er, which can easily over�t
the training data. In contrast, our proposed architecture focuses on
learning feature representations and is thus less prone to over�tting
than an MLP classi�er.

6.5 E�ciency analysis

We report the running time of di�erent methods on the queries.
Primitives Computation. Table 8 reports the time for primitive
computation for each method. For SoccerNet, the object tracks
are provided in the dataset, so we omit this step. SQL-Track and
SketchQL both use the same object tracker, Bytetrack [64], so
their running time is identical. SQL-Scene requires more expensive
scene graph computation. Additionally, in three of the four datasets,
SQL-Scene requires computing scene graphs in a 2 × 2 grid to
achieve reasonable accuracy, increasing the time 3×. For NL-Clip,
we precompute and save the image embeddings for each frame. For
all methods, primitive computation is a one-time process, and the
computed primitives can be reused for all future queries.
Query Execution. SketchQL’s execution time is generally on par
with other baselines. The runtime for SketchQL, however, may
�uctuate when there are more objects in the query. It may increase
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VIRAT BDD100K SoccerNet Youtube-8M

NL-Clip 77 13 458 76

SQL-Track 335 151 - 417

SQL-Scene 1139 152 5728 1189

SketchQL 335 151 - 417

Table 8: Time (seconds) required for primitive computation.

SQL-Track and SketchQL use object tracking while SQL-Scene

uses scene graphs. NL-Clip uses image embeddings for each frame.

(Q3.3) when the number of possible combinations for �nding the
one-to-one object mapping increases. It may decrease (Q1.3) when
the additional objects do not appear often and serve as early �lters.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

NL-Clip 28 29 29 2 136 142 152 36 34

SQL-Track 70 75 110 3 53 57 64 6 24

SQL-Scene - - 1 1 2 - - 2 2

SketchQL 12 14 8 1 19 20 67 6 14

Table 9: Running time (seconds).

Model Re�nement. When users provide feedback, SketchQL
re�nes the model and re-executes the query. The time required for
model re�nement is roughly the same for all queries and is about
2.9 seconds. The time is short because we are only �netuning the
model for a few steps with a few examples.

7 RELATED WORK

Query Interfaces. SoTAVDBMSs support two interfaces for query-
ing video moments: natural language-based interface [11, 22, 38, 53,
61] and SQL-based interface [9, 12, 13, 21, 34, 37, 52, 54]. Natural
language-based methods require a large amount of training data
and do not generalize well on datasets di�erent from the training
data. SQL-like methods are di�cult to use, requiring a considerable
amount of query speci�cation time. There is also existing work to
simplify query speci�cation for SQL-like queries through automatic
query synthesis [60]. For example, EQUI-VOCAL [60] automatically
synthesizes SQL-like queries from a few labeled examples. However,
the user would need to �nd the few labeled examples �rst, which
can require non-trivial human e�ort if the event of interest is rare.
Furthermore, EQUI-VOCAL uses scene graphs as the data model,
so its performance depends on the quality of scene graphs, which
currently can not be extracted as reliably as object trajectories. In
addition, single object queries like car left turn are unsupported
under this data model, since scene graphs must involve at least two
objects.

Our visual query language (Sketcher) provides an intuitive
visual interface with high usability, and our query execution com-
ponent (Matcher) provides high generalizability across datasets.
Visual query language for videos. There were early attempts to
develop visual query languages for videos in the 2000s [18, 28, 29,
35]. These methods provide GUI components for some prede�ned
predicates, and users can use them to compose queries in a visual
interface. Example predicates include temporal predicates like "start
at" and "�nish by" [28, 29] and spatial predicates like "overlap" and
"cover" [35]. These visual query languages are more like a visual
representation of SQL-like languages and are limited by prede�ned

predicates. In addition, they su�er from the same limitation as SQL-
like languages in that the user has to translate what he wants to be
rules composed by the prede�ned predicates (in the form of GUI or
not), which can be non-trivial. In contrast, in our proposed visual
query language, we obliviate the need for prede�ned predicates,
and users can freely draw animated sketches of the target event.
The visual query is an animation of the target event, so what the
user sees in the visual query is what he/she wants to query, which
is more intuitive and expressive.
Video data management systems. A line of existing video data
management systems focuses on improving the e�ciency of video
analytics queries. For machine learning inference queries, PP [41]
and BlazeIt [34] use lightweight models to �lter out irrelevant
frames, and EVA [54] reuses results across queries. For object track
queries, MIRIS [9] processes the video at low framerates when
possible. Our work SketchQL focuses more on the query interface
and features a visual query language for video moment retrieval.
Spatiotemporal information-based video retrieval. There are
also existing methods that use spatiotemporal information for video
retrieval. For example, methods use spatiotemporal descriptors as
features to train a model [17] and trajectory shape-based matching
using manually designed similarity functions [31, 32]. A recent
work STAR-Retrieval [12] formalizes the retrieval problem as a
graph-matching problem and supports fuzzy matching through dis-
cretization (e.g., discretizing distance between two objects). How-
ever, STAR-Retrieval is sensitive to the orientation of the objects
in the query due to its de�nition of angles between two objects.
User-provided sketch of a single object trajectory is also explored
as the query interface [31, 32]. However, in existing methods, the
sketch is drawn on the video frame, and the absolution location
information is used for matching (the goal is to �nd "near exact"
matches). For example, on a tra�c surveillance video, the sketch
may be on one particular road lane, and existing methods aim to
�nd objects that follow the trajectory in that lane. Therefore, these
sketches are tied to a particular video, and even in that video, the
retrieved trajectories are tied to a particular location, orientation,
and scale. STAR-Retrieval [12] supposedly supports user-provided
sketch in the form of a sequence of graphs, but no detail on the
sketch interface is available. The sketch represents spatial relation-
ships as distance and angle parameters, similar to predicates in
SQL. SketchQL supports multiple objects and is designed to be
dataset/location/orientation/scale independent.

8 CONCLUSION

Video moment querying is an important yet challenging task for
video analytics. Existing techniques for this task su�er from poor
ease of use and generalizability. In this paper, we presented SketchQL,
a novel visual querying system that enables intuitive video moment
retrieval through sketch-based queries. SketchQL allows users
to visually depict queries using the Sketcher interface. It then
matches user queries to video moments using a transformer model-
based Matcher trained on diverse synthetic data. Furthermore,
SketchQL incorporates user feedback via the Tuner to improve
retrieval accuracy. Our experiments demonstrate that SketchQL
signi�cantly improves the usability and retrieval accuracy over
state-of-the-art methods.
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Mārtin, š Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, et al.
2020. Lgsvl simulator: A high �delity simulator for autonomous driving. In 2020
IEEE 23rd International conference on intelligent transportation systems (ITSC).
IEEE, 1–6.

[48] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang,
Jing Li, and Jian Sun. 2019. Objects365: A large-scale, high-quality dataset for
object detection. In Proceedings of the IEEE/CVF international conference on
computer vision. 8430–8439.

13

https://github.com/openai/CLIP
https://github.com/Jingkang50/OpenPSG
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
https://figshare.com/s/da2add67051616fbf5de
https://arxiv.org/pdf/1609.08675v1.pdf
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=1110164612
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=1110164612
https://en.wikipedia.org/w/index.php?title=Evaluation_measures_(information_retrieval)&oldid=1138907815
https://en.wikipedia.org/w/index.php?title=Evaluation_measures_(information_retrieval)&oldid=1138907815
https://arxiv.org/abs/2305.03785


1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[49] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to �ne-tune
bert for text classi�cation?. In Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings
18. Springer, 194–206.

[50] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng,
Zhongdao Wang, and Yichen Wei. 2020. Circle loss: A uni�ed perspective of
pair similarity optimization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 6398–6407.

[51] Stefanie Tellex and Deb Roy. 2009. Towards surveillance video search by natural
language query. In Proceedings of the ACM International Conference on Image
and Video Retrieval. 1–8.

[52] Ioannis Xarchakos and Nick Koudas. 2019. Svq: Streaming video queries. In
Proceedings of the 2019 International Conference on Management of Data.
2013–2016.

[53] Shaoning Xiao, Long Chen, Songyang Zhang, Wei Ji, Jian Shao, Lu Ye, and Jun
Xiao. 2021. Boundary proposal network for two-stage natural language video
localization. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
Vol. 35. 2986–2994.

[54] Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore
Ramachandran. 2022. EVA: A symbolic approach to accelerating exploratory
video analytics with materialized views. In Proceedings of the 2022 International
Conference on Management of Data. 602–616.

[55] Jian-Ru Xue, Jian-Wu Fang, and Pu Zhang. 2018. A survey of scene
understanding by event reasoning in autonomous driving. International Journal
of Automation and Computing 15, 3 (2018), 249–266.

[56] Jingkang Yang, Yi Zhe Ang, Zujin Guo, Kaiyang Zhou, Wayne Zhang, and Ziwei
Liu. 2022. Panoptic Scene Graph Generation. In ECCV.

[57] Byoung-Kee Yi, Hosagrahar V Jagadish, and Christos Faloutsos. 1998. E�cient
retrieval of similar time sequences under time warping. In Proceedings 14th
International Conference on Data Engineering. IEEE, 201–208.

[58] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. 2020. Bdd100k: A diverse driving

dataset for heterogeneous multitask learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2636–2645.

[59] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020.
A survey of autonomous driving: Common practices and emerging technologies.
IEEE access 8 (2020), 58443–58469.

[60] Enhao Zhang, Maureen Daum, Dong He, Magdalena Balazinska, Brandon
Haynes, and Ranjay Krishna. 2023. EQUI-VOCAL: Synthesizing Queries for
Compositional Video Events from Limited User Interactions [Technical Report].
arXiv preprint arXiv:2301.00929 (2023).

[61] Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. 2020. Span-based
localizing network for natural language video localization. arXiv preprint
arXiv:2004.13931 (2020).

[62] Songyang Zhang, Houwen Peng, Jianlong Fu, Yijuan Lu, and Jiebo Luo. 2021.
Multi-scale 2d temporal adjacency networks for moment localization with
natural language. IEEE Transactions on Pattern Analysis and Machine Intelligence
44, 12 (2021), 9073–9087.

[63] Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. 2020. Learning 2d
temporal adjacent networks for moment localization with natural language. In
Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 34.
12870–12877.

[64] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan,
Ping Luo, Wenyu Liu, and Xinggang Wang. 2022. Bytetrack: Multi-object
tracking by associating every detection box. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXII. Springer, 1–21.

[65] Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng
Tao. 2022. Improving sharpness-aware minimization with �sher mask for better
generalization on language models. arXiv preprint arXiv:2210.05497 (2022).

[66] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022.
Conditional prompt learning for vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16816–16825.

14


	Abstract
	1 Introduction
	2 System Overview
	2.1 The Bounding Box Abstraction
	2.2 SketchQL Workflow

	3 Sketcher: Composing visual queries
	4 Matcher: Identifying Similar Clips
	4.1 Challenge: Measuring Similarity
	4.2 Scalable Training Data Generation
	4.3 Learned Similarity Function

	5 Tuner: Incorporating User Feedback
	6 Experiments
	6.1 Experimental setup
	6.2 End-to-end Query Performance
	6.3 Ease-of-use Evaluation
	6.4 Alternative Matcher Designs
	6.5 Efficiency analysis

	7 Related Work
	8 Conclusion
	References

